Text
Machine learning: konsep dan implementasi
Buku ini menguraikan beberapa konsep dasar dari machine learning dengan pendekatan matematika terapan. Pembahasan dimulai dari Dasar-Dasar Matematika untuk Madhine Learning, Konsep Machine Learning sampai pada berbagai contoh implementasi Machine Learning. Berbagai model yang dibahas diantaranya adalah Regresi Linier, Regresi Logistik, K-Nearest Neighbors, Decision Tree, Random Forest, Naive Bayes dan Support Vector Machine untuk metode pembelajaran secara supervised. Sedangkan untuk metode pembelajaran unsupervised akan menjelaskan tentang K-means, Principal Component Analysis, Density Based Spatial Clustering of Application with Noise (DBSCAN) dan Spatial temporal DBSCAN. Semua konsep dijelaskan disertai dengan contoh-contoh implementasinya menggunakan bahasa pemrograman Python.
No other version available