Text
Guide to elliptic curve cryptography
Termasuk bibliografi dan indeks.
CONTENTS:
1 Introduction and Overview
< >1.1 Cryptography basics
< >1.2 Public-key cryptography
< >< >1.2.1 RSAsystems
< >< >1.2.2 Discrete logarithmsystems
< >< >1.2.3 Elliptic curve systems
< >1.3 Why elliptic curve cryptography?
< >1.4 Roadmap
< >1.5 Notes and further references
2 Finite Field Arithmetic
< >2.1 Introduction to finite fields
< >2.2 Primefieldarithmetic
< >< >2.2.1 Addition and subtraction
< >< >2.2.2 Integer multiplication
< >< >2.2.3 Integer squaring
< >< >2.2.4 Reduction
< >< >2.2.5 Inversion
< >< >2.2.6 NISTprimes
< >2.3 Binary field arithmetic
< >< >2.3.1 Addition
< >< >2.3.2 Multiplication
< >< >2.3.3 Polynomial multiplication
< >< >2.3.4 Polynomial squaring
< >< >2.3.5 Reduction
< >< >2.3.6 Inversion and division
< >2.4 Optimal extension field arithmetic
< >< >2.4.1 Addition and subtraction
< >< >2.4.2 Multiplication and reduction
< >< >2.4.3 Inversion
< >2.5 Notes andfurther references
3 Elliptic Curve Arithmetic
< >3.1 Introduction to elliptic curves
< >< >3.1.1 Simplified Weierstrass equations
< >< >3.1.2 Group law
< >< >3.1.3 Group order
< >< >3.1.4 Group structure
< >< >3.1.5 Isomorphism classes
< >3.2 Point representation and the group law
< >< >3.2.1 Projective coordinates
< >< >3.2.2 The elliptic curve y2 = x3 +ax +b
< >< >3.2.3 The elliptic curve y2 +xy = x3 +ax2 +b
< >3.3 Point multiplication
< >< >3.3.1 Unknown point
< >< >3.3.2 Fixed point
< >< >3.3.3 Multiple point multiplication
< >3.4 Koblitz curves
< >< >3.4.1 The Frobenius map and the ring Z[
No other version available