Text
Cryptography of number theoretic ciphers
Termasuk bibliografi dan indeks.
CONTENTS:
Terminology of Cryptography
< >Notation
< >Types of Attacks
< >Public Key Ciphers
< >Block and Stream Ciphers
< >Protocols
Probability Theory
< >Definitions
< >The Birthday Problem
< >Random Variables
Divisibility and Arithmetic
< >Divisibility
< >Arithmetic with Large Integers
< >Greatest Common Divisors and the Euclidean Algorithm
Primes
< >The Fundamental Theorem of Arithmetic
< >The Distribution of Prime Numbers
< >Identifying and Finding Primes
< >The Largest Prime Factor of a Number
Congruences
< >Simple Properties of Congruences
< >Linear Congruences
< >The Chinese Remainder Theorem
Euler's Theorem and Its Consequences
< >Fermat's Little Theorem
< >Euler's Theorem
< >Primitive Roots
< >Discrete Logarithms
Second Degree Congruences
< >The Legendre Symbol
< >The Law of Quadratic Reciprocity
< >The Jacobi Symbol
< >Euler Pseudoprimes
< >Solving Quadratic Congruences Modulo m
Information Theory
< >Entropy
< >Perfect Secrecy
< >Unicity Distance
< >Some Obsolete Ciphers
< >The Entropy of Number Theoretic Ciphers
Groups, Rings and Fields
< >Groups
< >Simple Properties of Groups
< >The Baby-Step-Giant-Step Algorithm
< >Rings and Fields
< >Polynomials
< >Algebraic Number Theory
Exponential Methods of Factoring Integers
< >Fermat's Difference of Squares Method
< >Pollard's Rho Method
< >Pollard's p - 1 Method
< >Square Form Factorization
Finding Large Primes
< >Stronger Probable Prime Tests
< >Lucas Probable Prime Tests
< >Rigorous Proof of Primality
< >Prime Proofs for Arbitrary Large Integers
Elliptic Curves
< >Definitions and Examples
< >Factoring with Elliptic Curves
< >Primality Proving with Elliptic Curves
Subexponential Factoring Algorithms
< >Factoring with Continued Fractions
< >The Quadratic Sieve
< >Variations of the Quadratic Sieve
< >Large Primes
< >Multiple Polynomials
< >The Self-Initializing Quadratic Sieve
< >The Number Field Sieve
Computing Discrete Logarithms
< >Shanks' Baby-Step-Giant-Step Method
< >Pollard's Methods
< >The Rho Method for Discrete Logarithms
< >The Lambda Method for Discrete Logarithms
< >Discrete Logarithms via Index Calculus
< >Other Fast Methods for the Group R[subscript m]
Random Number Generation
< >Linear Feedback Shift Registers
< >A Quadratic Residue Random Number Generator
< >Hash Functions
< >Generating Truly Random Numbers
The Cryptographic Algorithms
< >Private Key Ciphers
< >Rijndael, the Advanced Encryption Standard
< >Byte Arithmetic in Rijndael
< >Word Arithmetic in Rijndael
< >The Structure of Rijndael
< >The Key Schedule of Rijndael
< >Summary of Rijndael
< >The Pohlig-Hellman Cipher
< >Elliptic Curve Pohlig-Hellman
Public Key Ciphers
< >Rivest-Shamir-Adleman
< >Massey-Omura
< >Elliptic Curve Massey-Omura
< >ElGamal
< >Elliptic Curve ElGamal
< >Rabin-Williams
< >Exercises
< >Signature Algorithms
< >Rivest-Shamir-Adleman Signatures
< >ElGamal Signatures
< >Rabin-Williams Signatures
< >The Digital Signature Algorithm
Key Exchange Algorithms
< >Key Exchange Using a Trusted Server
< >The Diffie-Hellman Key Exchange
< >The X.509 Key Exchange
Simple Protocols
< >Bit Commitment
< >Mental Poker
< >Oblivious Transfer
< >Zero-knowledge Proofs
< >Methods of Sharing Secrets
< >Secret Splitting
< >The Lagrange Interpolating Polynomial Scheme
< >The Asmuth and Bloom Threshold Scheme
< >Blind Signatures
Complicated Protocols
< >Contract Signing
< >Secure Elections
< >Electronic Cash
< >Electronic Cash According to Chaum
< >Electronic Cash According to Brands
Complete Systems
< >Kerberos
< >Pretty Good Privacy
Methods of Attack
< >Direct Attacks
< >Try All Keys
< >Factor a Large Integer
< >Solve a Discrete Logarithm Problem
< >Timing Attacks
Exploiting an Error
< >Key Management
< >Reuse of a Key
< >Bad Parameter Choice
< >Partial Key Exposure
< >Computer Failure
Active Attacks
< >Force a User to Make a Mistake
< >Man-in-the-Middle Attacks
< >Birthday Attacks
< >Subliminal Channels
No copy data
No other version available